
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #11

Optimization and Advanced STL

• Memory consists of a number of slots

– each slot has a fixed size (8 bits or 1 byte)

– each slot has a unique identifier in a “list”

– we can read and write bytes from each slot by
referring to the identifier

• Objects and variables takes up a number of
slots in the memory

– for example, float = 4 bytes

– the location of objects in memory is determined by
the identifier of the first slot they occupy

• A memory address = identifier of a slot in the
memory

3

Memory

• Stack
– parameters

– return address (where to begin execution when
function exits)

– pointer to current instance (this)

– return value (where to put the return value)

– local variables

• Function calls
– function call - push stack frame

– function exit - pop stack frame

• Storage objects on stack are de-allocated when
the stack frame is popped

4

Heap vs. Stack

• Heap

– is a list of free space: freelist

– on allocation: memory manager finds space and
marks it as used changing the freelist

– on de-allocation: memory manager marks space
as free changing the freelist

– memory fragmentation: memory fragments into
small blocks over lifetime of program

– garbage collection: combine fragments, possibly
moving objects

• HeapCompact in <windows.h>

5

Heap vs. Stack

• Functions form the basic components of

programming

• C++ offers different types of functions with a

specific overhead

– Normal (global) functions

– Static functions

– Non-virtual member functions

– Virtual member functions

6

Function calls

• Normal (global) functions

– cost: jumping to a different memory location (almost
negligible)

• General rule: forget about performance
overhead and use functions whenever it seems
logical
– Implementation in smaller sub-steps

– More readable code

– Easier to maintain code

– Encourages reuse (same sub-steps can be reused
in other problems)

7

Function calls

int amnoleft = Shoot(int amno, Enemy e);

• Static functions

– Static calls are handled in a similar way as

global function calls by the compiler

– Therefore the same (negligible) performance

overhead as global function calls

– Provides a way to group related functions under

a class for better understanding of code

8

Function calls

static int Player::Shoot(int amno, Enemy e) { /* ... */ }

// ...

int amnoLeft = player.Shoot(10,e1);

• Non-virtual member functions

– Functions associated with a particular instance

of a class

– Function address is determined at link time, but

type of object is known at compile time

9

Function calls

int Player::Shoot(int amno, Enemy e) { /* ... */ }

// ...

int amnoLeft = player.Shoot(10,e1);

• Non-virtual member functions

– Implemented by having a hidden ‘this’

parameter that points to the object being called

– Additional cost to regular function is just passing

the extra instance pointer as a parameter

• No real final difference in performance

10

Function calls

Player player;

int amnoLeft = __PlayerClass__Shoot(&player,10,e1);

• Virtual member functions

– Have potential to be expensive

– Occur when we invoke a method on

polymorphic objects

• example

11

Function calls

Player * player1 = new Warrior();

Player * player2 = new Priest();

player1->castSpell();

player2->meleeAttack();

• Virtual member functions

– Performance overhead for dereferencing the
look-up table (called v-table)

– This cost might become an issue if the function
is often called (e.g. 1000 times per frame)

– But the depth of the inheritance hierarchy has
no influence on performance

• each class has its own look-up table

– With multiple inheritance
• Append look-up table of base classes

• Using a large multiple inheritance tree could result in
a large lookup table

12

Function calls

• Virtual member functions

– When a virtual function is invoked directly on the

object, same performance hit as normal function

call

• Normal hit

• Virtual look-up table overhead

13

Function calls

Player player1;

player1.castSpell();

Player * player1 = new Player();

player1->castSpell();

• A non-virtual function overhead occurs every

time the function isMoving() is called

– quite a pity for a so trivial function

14

Function inline

class Player {

 public:

 bool isMoving() const;

 private:

 bool moving;

 float lastDisplacement;

};

bool Player::isMoving() const {

 return moving;

}

• The additional performance cost can be

avoided by making the member public

– But the user needs to know about the

implementation

– And it’s getting worse if the function uses more

members

• both members need to be public

• and the whole code needs to be updated!

15

Function inline

bool Player::isMoving() const {

 return (moving || lastDisplacement < 10);

}

 Inline functions must be declared in the

header file, not the body file
16

Function inline

class Player {

 public:

 bool isMoving() const;

 private:

 bool moving;

 float lastDisplacement;

};

inline bool Player::isMoving() const {

 return moving;

}

class Player {

 public:

 inline bool isMoving() const {

 return moving;

 };

 private:

 bool moving;

 float lastDisplacement;

};

• Solution: make it an inline function

• The compiler replaces the function with the code in the executable

– No function calling overhead, so more efficient execution

• So why not always use inline?

– Executable size increases because of code duplication

• Consumes more memory

• Poor use of code cache, lower program performance

– Some includes move to the header files, resulting in longer

compilation times

– You lose the declaration/implementation separation

• Avoid using inline when developing, but add inline later when you are

optimizing/finalizing your code

• Useful for small, frequently used methods like get-set methods

17

Function inline

• Containers

– Sequence containers (vector, deque, list)

– Associative containers (set, map)

• Iterators

• Functors

• Algorithms

18

STL

• To pass functions as parameters

19

Functors

bool lessThanAbsoluteValue(float a, float b) {

 return abs(a) < abs(b);

}

bool (*mycomparison)(float, float);

mycomparison = &lessAbsoluteValue;

// Now we can pass mycomparison to any function that takes

// function pointers of that type

• A function that uses the mycomparison

pointer might look like this

– but quite difficult to read

20

Functors

void sort(bool(*cmpfunc)(float, float),std::vector<float>) {

 // ...

}

• STL provides function objects: the functors

• A functor is simply any object of a class that

provides a definition for the operator ()

• The class is a normal class with constructor,

destructor, data and function members

21

Functors

• Example of a simple functor

22

Functors

class lessThanAbsoluteValue {

 public:

 bool operator()(float a, float b) const {

 return abs(a) < abs(b);

 }

};

// Using the sort function of STL:

sort(unSortedData.begin(),

 unSortedData.end(),

 lessThanAbsoluteValue()); // lessThanAbsoluteValue instance

• Multiple functors can be defined with

different signatures

23

Functors

class lessThanAbsoluteValue {

 public:

 bool operator()(float a, float b) const {

 return abs(a) < abs(b);

 }

 bool operator()(int a, int b) const {

 return abs(a) < abs(b);

 }

};

// ...

sort(unSortedData.begin(),unSortedData.end(),

 lessThanAbsoluteValue());

// uses the operator with type of unSortedData elements

• Often, we would like to pass a member

function

– Passing a pointer to this function does not work!

24

Functors

class Player {

private:

 int _life;

public:

 Player(int life) : _life (life) {}

 void PrintLife() { std::cout << _life << " " ; }

};

// ...

std::vector< Player > team ;

team.push_back(Player(9));

team.push_back(Player(3));

std::for_each(team.begin(),team.end(),&Player::PrintLife);

// Does not compile!

• But we can write a wrapper functor that calls

the member function

25

Functors

class Player {

private:

 int _life;

public:

 Player() : _life (0) {}

 Player(int life) : _life (life) {}

 void PrintLife() { std::cout << _life << " " ; }

 void operator() (Player p) {p.PrintLife();}

};

};

// ...

std::for_each(team.begin(),team.end(),Player());

• Or STL also provides functor adaptors

– mem_fun for member functions through a

pointer

– mem_fun_ref for member functions through an

object or a reference

– ptr_fun for global functions through a function

pointer

• Here mem_fun_ref as vector of Player

26

Functors

std::for_each(team.begin(),team.end(),

 std::mem_fun_ref(&Player::PrintLife));

• Examples

27

Functors

vector<Player *> team;

// assuming: bool Player::CompPlayer(Player *);

sort(team.begin(),team.end(),mem_fun(&Player::CompPlayer));

vector<Player> team;

// assuming: bool Player::CompPlayer(Player);

sort(team.begin(),team.end(),mem_fun_ref(&Player::CompPlayer));

vector<Player> team; // resp. Player *

// assuming: bool CompPlayer(Player, Player); // resp. Player *

sort(team.begin(),team.end(),ptr_fun(CompPlayer));

• STL defines many different algorithms

• Functions of common complex operations

on containers

• Four categories of algorithms

– Non-modifying operations

– Modifying operations

– Sorting and operations on sorted range

• Binary search

• Merge

– Min/max

28

Algorithms

29

Non-modifying container operations

operation description

for_each apply function to range

find find element in range

find_if find element in range satisfying condition

find_end find last subsequence in range

find_first_of find element from set in range

adjacent_find find equal adjacent elements in range

count count appearances of element in range

count_if return number of elements in range satisfying condition

mismatch return first position where two ranges differ

equal test whether the elements in two ranges are equal

search find subsequence in range

search_n find succession of equal elements in range

• Example: find

– Iterates through the elements in a container and

looks for specific element

30

Non-modifying container operations

vector<string> playersName;

// names construction ...

// check if new name does not already exist

if (find(playersName.begin(), playersName.end(), newName) !=

 playersName.end()) {

 // name already exists ...

}

else {

 // name does not exist yet ...

}

• Example: for_each

– Executes a function on a range of elements

• Very different from a regular for statement

31

Non-modifying container operations

vector<string> playersName;

// names construction ...

// print the names, assuming: void printName(string s) { ... }

for_each(playersName.begin(), playersName.end(), printName);

void update (Player& player) {

 player.update();

}

// update all players

for_each(players.begin(), players.end(), update);

• Example: count

– Counts the amount of elements matching a

particular element

32

Non-modifying container operations

// count players named “God”

int nbGod = count(playersName.begin(), playersName.end(), “God”);

Player player1 (“Azimux”,10,4.5,6.7);

// Creation of vector<Player> players ...

// assuming: bool Player::operator == (const Player& p) const

// count players similar to player1

int nbP1 = count(players.begin(), players.end(), player1);

• Example: count_if

– Same as count but evaluates a predicate

instead of using operator ==

33

Non-modifying container operations

class isSamePlayer {

public:

 bool operator()(const Player& player) const {

 return (player.getName().compare(“God”) == 0);

 }

};

// Creation of vector<Player> players ...

// count players with name “God”

int nbGod = count_if(players.begin(), players.end(),

isSamePlayer());

• Example: count_if

34

Non-modifying container operations

bool isSamePlayer (const Player& player1, const Player& player2) {

 return (player1.getName().compare(player2.getName()) == 0);

}

Player myPlayer (“Azimux”,10,4.5,6.7);

// Creation of vector<Player> players ...

// count players similar to myPlayer

int nbP1 = count_if(players.begin(), players.end(),

bind1st(ptr_fun(&isSamePlayer),myPlayer));

• As count_if is expecting a unary function to

compare the elements, we need to convert

the binary function:

 into a unary function applied on our

 particular element

– here the first parameter player1 will always be

myPlayer

35

Function adaptors

bool isSamePlayer (const Player& player1, const Player& player2)

bind1st(ptr_fun(&isSamePlayer),myPlayer)

// bind2nd is also possible

36

Modifying container operations

operation description

copy copy range of elements

copy_backward copy range of elements backwards (start copying from end)

swap exchange values of two objects

swap_ranges exchange values of two ranges

iter_swap exchange values of objects pointed by two iterators

transform apply function to range

replace replace values in range

replace_if replace elements in range satisfying condition

replace_copy copy range replacing value

replace_copy_if copy range replacing element satisfying condition

fill fill range with value

fill_n fill sequence with value

generate generate values for range with function

generate_n generate values for sequence with function

37

Modifying container operations

operation description

remove remove values from range

remove_if remove elements from range satisfying condition

remove_copy copy range removing values

remove_copy_if copy range removing elements satisfying condition

unique remove consecutive duplicates in range

unique_copy copy range removing duplicates

reverse reverse range

reverse_copy copy range reversed

rotate rotate elements in range

rotate_copy copy rotated range

random_shuffle re-arrange elements in range randomly

partition partition range in two

stable_partition partition range in two with stable ordering

• Example: copy

– Copies all elements in a specified range

[first,last) to another range

38

Modifying container operations

vector<string> playersName;

// names construction ...

// copy the first three names

// assuming there is at least 3 names

vector<string> podium;

copy(playersName.begin(), playersName.begin()+3, podium.begin());

• Other examples

39

Modifying container operations

// reverse the podium

reverse(podium.begin(), podium.end());

// shuffle the player names

random_shuffle(playersName.begin(), playersName.end());

// remove non-god player names

// assuming: bool NonGod(string s) { ... }

remove_if(playersName.begin(), playersName.end(), NonGod);

40

Sorting

operation description

sort sort elements in range

stable_sort sort elements preserving order of equivalents

partial_sort partially sort elements in range

partial_sort_copy copy and partially sort range

nth_element sort element in range

• Sort

– Sorts all the elements in a range (based on

quicksort algorithm)

– Uses operator < or a functor to order elements

41

Sorting

class Player {

public:

 bool operator < (const Player& p) {

 return this->level_ < p.level_;

 }

};

vector<Player> players; // ...

sort(players.begin(), players.end());

• Sort

– Sorts all the elements in a range (based on

quicksort algorithm)

– Uses operator < or a functor to order elements

42

Sorting

bool isPlayerLessThan(const Player& p1, const Player& p2) {

 return p1.level_ < p2.level_;

}

vector<Player> players; // ...

sort(players.begin(), players.end(), ptr_fun(isPlayerLessThan));

• Sort is not “stable”

– Two elements with the same order might end up in
different relative positions

• If a stable sort is required, use the stable_sort
algorithm instead

– However, this runs slower than a normal sort

– Relative order of equal elements will be preserved

• In case of a large number of elements and we only
need the top X elements sorted, use partial_sort

– [first,middle) contains the smallest elements of the entire
range sorted in ascending order (not stable)

– [middle,end) contains the remaining elements without
any specific order

43

Sorting

• Example

44

Sorting

class Player {

 public:

 bool operator < (const Player& p) {

 return this->level_ < p.level_;

 }

};

vector<Player> players; // ...

// sort players by level

// two players with same level -> unknown relative location

sort(players.begin(), players.end());

// -> always the same relative location (the original)

stable_sort(players.begin(), players.end());

// partial sort, to get only ordered podium

partial_sort(players.begin(), players.begin() + 3, players.end());

45

Binary search

operation description

lower_bound return iterator to lower bound

upper_bound return iterator to upper bound

equal_range get subrange of equal elements

binary_search search element in range

• Example

46

Binary search

class Player {

 public:

 bool operator < (const Player& p) {

 return this->level_ < p.level_;

 }

};

vector<Player> players; // ...

// sort player by level

sort(players.begin(), players.end());

// find same as player1 by binary search

// players container is supposed to be sorted

bool found = binary_search(players.begin(), players.end(), player1);

47

Merge

operation description

merge merge sorted ranges

inplace_merge merge consecutive sorted ranges

includes test whether sorted range includes another

sorted range

set_union union of two sorted ranges

set_intersection intersection of two sorted ranges

set_difference difference of two sorted ranges

set_symmetric_difference symmetric difference of two sorted ranges

• Examples

48

Merge

// sort players by level

sort(RedTeam.begin(), RedTeam.end());

sort(BlueTeam.begin(), BlueTeam.end());

// merge (and sort) in allPlayers

merge(RedTeam.begin(), RedTeam.end(),

 BlueTeam.begin(), BlueTeam.end(),

 allPlayers.begin());

// check if levels of blue team players are also

// levels of red team players

bool in = includes(BlueTeam.begin(), BlueTeam.end(),

 RedTeam.begin(), RedTeam.end());

49

Min/max

operation description

min return the lesser of two arguments

max return the greater of two arguments

min_element return smallest element in range (iterator)

max_element return largest element in range (iterator)

lexicographical_compare lexicographical less-than comparison

next_permutation transform range to next permutation

prev_permutation transform range to previous permutation

• Examples

– Uses operator < or a functor to compare

elements

50

Min/max

cout << “Best player between ” <<

 player1.getName() <<

 “ and ” <<

 player2.getName() <<

 “ is ” <<

 (max(player1,player2)).getName() ;

cout << “Total player higher level is ” <<

 (*max_element(players.begin(),players.end())).getLevel();

• Usefulness of these algorithms can be
increased by overloading operators <, ==,
etc.

– But do this within the rules!

• In order to use the algorithms, the following
include is necessary

• All algorithms are in the std namespace

• Use STL design to create your own
containers and algorithms

51

Algorithms

#include <algorithm>

• The Boost library offers extensions to STL

– including more containers such as

• array

• bidirectional map

• circular buffer

• disjoint set

• graph

• tree

• ...

– http://www.boost.org

52

More containers

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/

• A graph 𝐺 = (𝑉, 𝐸) consists of a set V of

vertices and a set E of edges

• Abstractly speaking, vertices are elements

and edges are pairs of elements

• Example

– 𝑉 = {1, 2, 3, 4, 5, 6, 7}

– 𝐸 = { 1,2 , 1,3 , 2,3 , 2,5 ,

 3,5 , 4,5 , 3,6 , 3,7 , (5,6)}

53

Graph

1

2

3

4
5

6

7

• A common representation of a graph is the

adjacency matrix, a n x n matrix of zeroes and

ones with a one at (i,j) if and only if (i,j) is an edge

in E

– 𝑉 = {1, 2, 3, 4, 5, 6, 7}

– 𝐸 = { 1,2 , 1,3 , 2,3 , 2,5 ,

 3,5 , 4,5 , 3,6 , 3,7 , (5,6)}

 54

Graph

1

2

3

4
5

6

7

0 1 1 0 0 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 1
0 0 0 0 1 0 0
0 1 1 1 0 1 0
0 0 1 0 1 0 0
0 0 1 0 0 0 0

• A different common representation for graphs is the

adjacency list representation

• It consists of an array 𝐴[1 ⋯ 𝑛], with one entry for each

vertex, with access to a list of neighbors of that vertex

– 𝑉 = {1, 2, 3, 4, 5, 6, 7}

– 𝐸 = { 1,2 , 1,3 , 2,3 , 2,5 ,

 3,5 , 4,5 , 3,6 , 3,7 , (5,6)}

55

Graph

1

2

3

4
5

6

7 1 2 3 4 5 6 7

2

3

4

5

1

6

7

3

5

1

2

5

3

2

6

5

3 3

• Boost proposes the two implementations

– Classes adjacency_list and adjacency_matrix

– Template classes describing the type of graph

• 1st type represents the STL container used to store

the edges (vecS for vector, listS for list etc.)

• 2nd type represents the STL container used to store

the vertices (vecS for vector, listS for list etc.)

• 3rd type represents type of edges among

bidirectional, directed or undirected

• Edges are then filled in the graph

– Function add_edge

56

Boost Graph Library

// create a typedef for the Graph type

typedef adjacency_list<vecS, vecS, bidirectionalS> Graph;

// Make convenient labels for the vertices

enum { A, B, C };

const int num_vertices = 3;

// writing out the edges in the graph

typedef std::pair<int, int> Edge;

Edge edge_array[] = { Edge(A,B), Edge(C,A) };

const int num_edges = 2;

// declare a graph object

Graph g(num_vertices);

// add the edges to the graph object

for (int i = 0; i < num_edges; ++i)

 add_edge(edge_array[i].first, edge_array[i].second, g);

57

Boost Graph Library

A B

C

• Basic operations

• Core searches

• Other core algorithms

• Shortest paths / Cost minimization algorithms

• Minimum spanning tree algorithms

• Random spanning tree algorithm

• Connected components algorithms

• Maximum flow and matching algorithms

• Minimum cut algorithms

• Sparse matrix ordering algorithms

• Graph metrics

• Graph structure comparisons

• Layout algorithms

• Clustering algorithms

• Planar graph algorithms

• Miscellaneous algorithms

58

Algorithms in Boost Graph Library

End of lecture #11

Next lecture

Game performance tuning

